Плохое воздействие от возобновляемых источников энергии. Способы использования возобновляемых источников энергии. Неблагоприятные факторы ветроэнергетики

2015-05-15

Эта статья является продолжением темы развития энергетики на основе возобновляемых источников энергии (ВИЭ). Речь идёт о вкладе энергетики на возобновляемых источниках в эмиссию парниковых газов и, в целом, побочных экологических эффектах развития энергетики на основе ВИЭ. В ряде случаев отрицательные последствия возобновляемой энергетики для среды и общества могут быть велики - вопреки заявленным целям об улучшении экологических показателей, и каждый проект требует отдельного тщательного анализа. В целом, положительные и отрицательные экологические эффекты энергетики на ВИЭ - вопрос, ещё требующий дополнительных комплексных исследований.

Климатический аспект развития возобновляемой энергетики связан с «нулевой эмиссией CO 2 » при работе солнечных, ветряных, гидравлических и других энергетических станций на возобновляемых ресурсах. Действительно, в данных случаях выработка энергии идёт без сжигания углеводородного сырья и, как следствие, без выделения парниковых газов и других загрязнителей в атмосферу.

Однако ситуация сложнее, если рассматривать весь жизненный цикл производства, начиная с подготовительных стадий и включая побочные эффекты в процессе выработки энергии.

Для получения энергии необходимы изготовление и установка энергетического оборудования, создание инфраструктуры и обеспечение условий для его работы, подготовка сырья, утилизация отработанного материала и оборудования по истечении срока службы. Это требует работы металлургических, машиностроительных, сельскохозяйственных и других предприятий, использования энергии из ископаемых источников, и означает уже ненулевую эмиссию.

Учёт воздействий на окружающую среду на всех стадиях показывает, что переход к возобновляемой энергетике не всегда ведёт к снижению загрязнения среды, в том числе к снижению эмиссии CO 2 и других парниковых газов.

Исследования побочных эффектов (в том числе экологических) возобновляемой энергетики в комплексе имеют сравнительно недавнюю историю, а в последнее время об этом заговорили активнее. Одна из недавних заметных работ — труд норвежского исследователя, научного сотрудника и руководителя проектов Западно-норвежского исследовательского института (Western Norway Research Institute, WNRI) Отто Андерсена (Otto Andersen) «Непреднамеренные последствия возобновляемой энергетики. Проблемы, требующие решения» . Работа Андерсена использует ранее собранную разными исследователями информацию по отдельным видам энергии и регионам, на основе которых выстраивается обобщённая картина экологических рисков возобновляемой энергетики.

Ключевые понятия и подходы связаны с анализом жизненного цикла (Life Cycle Analysis, LCA) и оценкой так называемых «встречных эффектов», «эффектов отскока» или «обратных эффектов» — rebound effects, что в отечественной литературе переводят как «восстановительные эффекты» или, без перевода, «ребаунд-эффекты».

Основное внимание с позиций анализа жизненного цикла и встречных эффектов уделено биоэнергетике (выращиванию энергетических культур для производства биотоплива), солнечной фотовольтаической энергетике, некоторым аспектам водородной энергетики и использованию электромобилей.

Ряд вопросов остаётся открытым, исследования побочных эффектов в возобновляемой энергетике пока нельзя назвать достаточно хорошо изученной темой, хотя в предыдущие годы по данной тематике был проведён ряд локальных исследований и экспериментов.

Возобновляемая энергетика и эмиссия парниковых газов

Если говорить об эмиссии парниковых газов, то разные виды возобновляемой энергетики, по выражению Андерсена, вовсе не являются «равнозелёными» (equally green), если рассматривать их с позиций полного жизненного цикла. Основной показатель, с точки зрения эмиссии парниковых газов, связанной с производством энергии, используемый в том числе Андерсоном, — это количество грамм-эквивалента СО 2 на единицу произведённой энергии, в частности, для электроэнергетики принимается 1 кВт·ч, то есть гСО 2 экв/кВт·ч.

В данном случае важна методика расчёта и исходные допущения — прежде всего, для какого интервала времени идёт расчёт, а также загрузка производственных мощностей (коэффициент использования установленной мощности, то есть КИУМ) и, соответственно, ожидаемая выработка энергии за определённый промежуток времени. Картина здесь та же, что и с расчётом выровненных затрат (Levelized Costs, LC) на производство единицы энергии, о котором мы говорили в статье . Чаще всего используется 20-летний интервал.

Анализ жизненного цикла даёт следующие показатели эмиссии для разных типов производства электрической энергии [гСО 2 экв/кВт·ч]: ветряная — 12; приливная — 15; гидравлическая — 20; океаническая волновая — 22; геотермальная — 35; солнечные (фотовольтаические) батареи — 40; солнечные концентраторы — 10; биоэнергетика — 230.

Это, однако, в любом случае на порядок меньше величин, приводимых для энергетики, работающей на ископаемом сырье : угольная — 820; газовая — 490. В то же время, самой «экологически безопасной», в данном смысле, является атомная энергетика, где показатель эмиссии гСО 2 экв/кВт·ч составляет всего 12, то есть этот параметр равен самым низким показателям энергетики на возобновляемых источниках. Очевидно, что распределение эмиссии парниковых газов по стадиям жизненного цикла производства для разных типов энергетики кардинально различается (рис. 1, табл. 1).

В случае с ветряной, солнечной, геотермальной и гидроэнергетикой основная экологическая нагрузка приходится на стадию производства материалов, оборудования и строительства станций. Сходная структура и у атомной энергетики. У энергетики, работающей на ископаемом топливе, основная часть эмиссии приходится на период работы станции, для которой необходимо сжигание топлива. То же верно и для биоэнергетики. Таким образом, здесь мы тоже можем провести аналогию со структурой затрат — в первом случае «экологические затраты» относятся, скорее, к категории постоянных, во втором — к категории переменных. В первом случае преимущества сильнее проявляются на более длительных интервалах времени. Во втором случае сократить разрыв в «углеродно-эмиссионной ёмкости производства» можно за счёт технологий, позволяющих сокращать расход топлива и систем улавливания парниковых газов. В данном случае, при сравнении «эмиссионной ёмкости» ветряных и угольных электростанций допускается временной интервал 20 лет и КИУМ ветростанций составляет 30-40 %.

Основное внимание с позиций анализа жизненного цикла и встречных эффектов уделено биоэнергетике (выращиванию энергокультур для производства биотоплива), солнечной фотовольтаической энергетике, некоторым аспектам водородной энергетики и использованию электромобилей

Следует учитывать, что выше приведены грубые усреднённые (медианные) значения, здесь не может быть большой точности. Очень много зависит от технологии и конкретных условий производства. Данные различных исследований и разных источников могут кардинально расходиться. В частности, для ветроэнергетики разброс может составлять от 2 до 80 гСО 2 экв/кВт·ч (onlinelibrary.wiley.com).

Для ГЭС показатель гСО 2 экв/кВт·ч может достигать 180. А «нижние» значения для электростанций на ископаемом топливе — 200-300 гСО 2 экв/кВт·ч.

Причины, по которым эмиссия парниковых газов может достигать высоких значений для жизненных циклов гидроэлектростанций, солнечных, биоэнергетических и геотермальных станций, различны. В случае с ГЭС это, прежде всего, формирование водохранилища при плотине, в котором может формироваться застойный режим с микро био логическим разложением органического материала в приплотинной зоне, что вызывает рост эмиссии СО 2 и СН 4 (метана). Сходные процессы возможны и в зонах приливных электростанций. В солнечной фотовольтаической энергетике основные проблемы связаны с процессом производства солнечных батарей, ведь среди прочих рисков для среды и здоровья он приводит к эмиссии ряда соединений фтора — гексафторэтана C 2 F 6 , трёхфтористого азота NF 3 , гексафторида серы SF 6 , являющихся мощными парниковыми газами. В случае с геотермальной энергетикой многое зависит от состава энергоносителя — термальной воды, отличающейся высокой температурой и минерализацией со сложным химическим составом. В процессе её использования и утилизации возможно как непосредственное тепловое загрязнение среды, так и выделение в почву, воду и атмосферу ряда химических соединений, включая парниковые газы.

Эмиссия парниковых газов при использовании биоэнергии происходит на всех стадиях. Прежде всего, она происходит на стадии выращивания энергетических культур, в частности, рапса и масличной пальмы. Интенсивная культивация рапса требует большого количества азотных удобрений, что ведёт к росту эмиссии мощного парникового газа — двуокиси азота N 2 0, являющейся, кроме того, разрушителем озонового слоя.

В среднем, как видно, несмотря на ребаунд-эффект, эмиссия парниковых газов в жизненном цикле возобновляемых источников энергии остаётся существенно ниже по сравнению с невозобновляемыми энергетическими ресурсами (за исключением атомной энергетики)

Большие плантации масличной пальмы были созданы в Юго-Восточной Азии (Индонезии, Малайзии, Таиланде) на торфяно-болотных землях, являющихся естественными «ловушками» и «кладовыми» углерода, и на месте тропических и экваториальных дождевых лесов, выполняющих роль «лёгких планеты». Это вызвало быстрое разрушение почвенного покрова, нарушение естественного режима поглощения углерода и, соответственно, рост поступления парниковых газов (СО 2 и СН 4) в атмосферу. При худших сценариях масштабный переход от ископаемого к биотопливу может не уменьшить, а даже увеличить эмиссию парниковых газов на величину до 15 %.

Другой, пока практически неизученный аспект — возможное снижение общего альбедо (отражающей способности) Земли при масштабном распространении энергетических культур, что теоретически может стать фактором потепления климата.

На стадии эксплуатации — сжигания биотоплива (на транспорте и энергетических станциях), обычно производимого в смеси с ископаемым топливом, также образуются, как выясняется, новые химические соединения, несущие как токсическую, так и парниковую опасность. Рост эмиссии парниковых газов как следствие действий по её сокращению — один из примеров ребаунд-эффекта.

В среднем, как видно, несмотря на этот эффект, эмиссия парниковых газов в жизненном цикле возобновляемых источников энергии остаётся существенно ниже по сравнению с невозобновляемыми энергетическими ресурсами (за исключением атомной энергетики).

В то же время, это далеко не во всех случаях так, и каждый конкретный проект или программа развития энергетики на возобновляемых источниках требует тщательного анализа, в том числе с экологических позиций — всегда заведомо «более зелёными» по сравнению с другими вариантами их считать нельзя.

Другие побочные эффекты

Помимо эмиссии парниковых газов в качестве встречного эффекта, энергетика на ВИЭ имеет и другие побочные экологические последствия. ГЭС и приливные электростанции меняют режимы течений и температур рек и морских заливов, становятся барьерами на путях миграции рыб и других потоков вещества и энергии. Кроме того, один из существенных побочных эффектов ГЭС — затопление территорий, пригодных для расселения, сельскохозяйственной и другой деятельности.

При этом на берегах водохранилищ при ГЭС могут развиваться оползневые процессы, возможны изменения местных климатических условий и развитие сейсмических явлений. Застойный водный режим в водохранилищах способен провоцировать не только рост эмиссии парниковых газов, но и накопление вредных веществ, представляющих угрозу в том числе для здоровья человека.

Отдельную опасность могут представлять прорывы и обрушения плотин ГЭС — особенно в горных и сейсмоопасных районах. Одна из крупнейших катастроф такого рода произошла в 1963-м году на реке Вайонт (Vajont) в итальянских Альпах, где в водохранилище при плотине ГЭС сошёл гигантский оползень, вызвавший перелив волны через плотину и образование «цунами» высотой до 90 м. Огромной волной было снесено несколько населённых пунктов, погибло более 2000 человек.

Геотермальная энергетика несёт риски химического загрязнения воды и почвы — термальные флюиды, помимо углекислого газа, содержат сульфид серы H 2 S, аммиак NH 3 , метан CH 4 , поваренную соль NaCl, бор B, мышьяк As, ртуть Hg. Возникает проблема утилизации опасных отходов. Кроме того, возможны коррозионные разрушения конструкций самих термальных станций, а выкачивание термальной воды может вызывать деформации слоёв горных пород и локальные сейсмические явления, сходные с теми, что возникают при любом горнодобывающем производстве или заборе межпластовых грунтовых вод.

Биоэнергетика связана с отчуждением сельскохозяйственных земель (и других ресурсов) для выращивания энергетических культур, что при масштабном переходе к использованию биоэнергии может обострить продовольственную проблему в мире.

Самый грубый расчёт показывает, что выращивание рапса или подсолнечника в качестве сырья для биотоплива может дать в итоге около тонны биотоплива с 1 га обрабатываемой земли. Общий объём потребления энергии в мире достигает 20 млрд тонн в год в нефтяном эквиваленте. Замещение этого объёма биотопливом всего на 10 %, или на 2 млрд тонн, потребовал бы отчуждения порядка 2 млрд га земли, то есть около 40 % всех сельскохозяйственных угодий мира или 15 % всей площади земной суши, исключая Антарктиду. Масштабное распространение энергетических монокультур снижает биоразнообразие, как прямо, так и косвенно, через ухудшение условий обитания многих видов флоры и фауны.

На стадии сжигания биологического топлива, в частности, на транспорте, при его смешивании с ископаемым топливом (обычным дизелем или бензином) и использовании добавок, позволяющих лучше работать в зимних условиях, идёт образование новых химических соединений, токсичных и канцерогенных по своим свойствам. Это показали, в частности, наблюдения и эксперименты в рамках исследования «Влияние биокомпонентного состава топлива на эмиссию дизельных двигателей и ухудшение дизельного масла» (Influence of biocomponents content in fuel on emissions from diesel engines and engine oil deterioration).

В этой связи сравнительно предпочтительной выглядит водорослевая энергетика — получение энергетического сырья из водорослей. Среди известных культур — такие как Botryococcus bran-nil и Arthrospira (Spirulina) platensis. Водоросли, по сравнению с «сухопутными» энергокультурами, отличаются более высокой (в определённых условиях — на порядок выше) продуктивностью на единицу площади в единицу времени и более высоким содержанием жиров (липидов) — исходного сырья для производства биотоплива. Кроме того, выращивание водорослей не связано с отчуждением продуктивных сельскохозяйственных земель, созданием сложных конструкций и оборудования, использованием большого объёма удобрений. При этом водоросли — один из мощных поглотителей углекислого газа и продуцентов кислорода. В связи с этим, это направление возобновляемой энергетики, пока недостаточно разработанное, можно считать весьма перспективным и с производственных, и с экологических позиций.

Ветроэнергетика — наименее опасная с точки зрения эмиссии парниковых газов и загрязняющих веществ, вызывает в то же время ряд претензий экологов по другим позициям. Они включают шумовое загрязнение местности, «эстетическое загрязнение», риск воздействия вращающихся лопастей на психику. Другая группа претензий связана с воздействием на фауну — в частности, ветряки могут отпугивать птиц и вызывать их гибель при столкновении с лопастями.

Проблема, также нарастающая со временем, особенно по мере строительства офшорных (морских) ветростанций — проблемы с доступностью для сервисных и аварийных служб, затруднения в обслуживании, устранении поломок и аварийных ситуаций, в частности, при возгорании ветрогенераторов

Накопленный опыт эксплуатации ветрогенераторов, насчитывающий в Западной Европе уже около 20 лет, показывает, что эти претензии носят скорее умозрительный характер — во всяком случае, при данной плотности ветрогенераторов и соблюдении определённых мер безопасности, в частности, размещение ветрогенераторов на расстоянии не менее нескольких сотен метров от жилых кварталов. Более реальными выглядят другие проблемы. Одна из них очевидна — ветроэлектростанции требуют больших площадей, и существуют некие пределы их установки на территориях с высокой плотностью населения и инфраструктуры. Другая проблема, становящаяся со временем всё более насущной — утилизация отработавших свой ресурс лопастей ветротурбин, построенных из композитных материалов и несущих высокий потенциал загрязнения среды.

Следующая проблема, также нарастающая со временем, особенно по мере строительства офшорных (морских) ветростанций — проблемы с доступностью для сервисных и аварийных служб, затруднения в обслуживании, устранении поломок и аварийных ситуаций, в частности, при возгорании ветрогенераторов.

Все перечисленные выше проблемы могут усилиться, создавая мультипликативный эффект, при более широком распространении ветроэнергетики. В настоящее время на неё приходится около 9 % общего объёма производства электроэнергии в Германии, около 5 % в Италии, 18 % — в Испании. В других крупных странах-производителях электроэнергии это существенно меньшая доля, в среднем же в мире она составляет около 2,5 %. К каким эффектам может привести наращивание ветроэнергетических мощностей в два-три раза и более — отдельный вопрос для изучения.

В солнечной энергетике основные экологические риски связаны с использованием большого количества токсичных и взрывных компонентов при изготовлении солнечных батарей. В частности, солнечные батареи содержат теллурид кадмия CdTe, сульфид кадмия CdS, арсенид галлия GaAs, а в процессе производства используется фтор, создающий ряд токсичных соединений. Это создаёт проблемы сначала на стадии производства, а затем на стадии утилизации батарей, отработавших свой ресурс. Эта проблема также неизбежно будет нарастать со временем. Другая проблема производства солнечных батарей — большие объёмы потребления воды. По американским данным, потребление воды высокой степени очистки для производства 1 МВт мощностей — около 10 л/мин.

Интегральный показатель, применяемый для оценки вреда того или иного вида деятельности для общества и среды, — это внешние, или экстернальные издержки (external costs), не включённые в цену продукта издержки, которые несёт общество в целом, то есть причинённый социально-экономический и социально-природный ущерб. Внешние издержки включают в себя вред для здоровья людей, коррозию и другие повреждения, наносимые материалам и конструкциям, снижение урожаев и др.

В оценке внешних издержек многое зависит от исходных допущений, они могут резко различаться по странам. В частности, для стран ЕС диапазон внешних издержек производства электроэнергии (евроцентов за кВт·ч) для различных источников энергии составляют (по данным ec.europa.eu): уголь — 2-15; нефть — 3-11; газ — 1-4; атомная энергия — 0,2-0,7; биомасса — 0-5; гидроэнергия — 0-1; солнечная (фотовольтаическая) энергия — 0,6; ветер — 0-0,25.

Для Германии (крупнейшего производителя электроэнергии в Европе с широким развитием энергетики на основе возобновляемых источников энергии) внешние маржинальные (переменные) издержки производства электроэнергии различными источниками оцениваются в следующие величины (евроцентов за кВт·ч): уголь — 0,75; газ — 0,35; атомная энергия — 0,17; солнечная — 0,46; ветряная — 0,08; гидроэнергия — 0,05.

Здесь мы также видим, что энергетика на ВИЭ несёт в среднем заметно меньшие издержки для общества, чем получение энергии из ископаемого сырья.

В то же время, атомная энергетика обнаруживает не менее высокую экологическую конкурентоспособность, несмотря на то, что в связи с известными катастрофами на АЭС в Чернобыле и Фукусиме её репутация в глазах общества заметно подорвана.

Развитие энергетики на ВИЭ требует дополнительного использования невозобновляемых ресурсов: сырья для удобрений в случае с биоэнергетикой, металла для оборудования и строительных конструкций, ископаемого природного газа для производства водородного топлива, энергии из ископаемых источников для работы данных производств

Дополнительные сложности и проблемы связаны с тем, что стадии жизненного цикла могут быть распределены по разным странам. В частности, начальные стадии, на которые приходится основная часть внешних издержек, такие, как выращивание энергетических культур или производство солнечных батарей, чаще проходят за пределами Европы и Северной Америке. Так, на данный момент почти 60 % всех солнечных батарей в мире производится в Китае.

Операционная стадия, на которую в случае с ВИЭ приходится минимальная доля издержек, связана с западными странами — потребителями «зелёной» энергии, а издержки завершающей стадии — утилизации, также могут выноситься в другие регионы.

Иными словами, в случае с энергетикой на основе ВИЭ также возможны ситуации, когда основные выгоды получают одни группы, а издержки ложатся на других. Распределение выгод и издержек — также важный вопрос, имеющий уже социальное измерение.

Фундаментальная же проблема состоит в том, что развитие энергетики на ВИЭ требует дополнительного использования невозобновляемых ресурсов: сырья для удобрений в случае с биоэнергетикой, металла для оборудования и строительных конструкций, ископаемого природного газа для производства водородного топлива, энергии из ископаемых источников для работы данных производств. Соответственно, наращивание производства энергии за счёт ВИЭ будет требовать и роста потребления невозобновляемых ресурсов. Положение вещей, при котором можно будет говорить о безусловном успехе и состоятельности возобновляемой энергетики — создание полных производственных циклов, где производство возобновляемой энергии обеспечивается из возобновляемых же источников.

  1. Andersen O., Unintended Consequences of Renewable Energy. Problems to be solved. Springer-Verlag. London. 2013.
  2. Дегтярев К.С. Возобновляемые источники энергии - от энтузиазма к прагматизму // Журнал С.О.К., №4/2015.
  3. Schlomer S., Bruckner T., Fulton L., Hertwich E., McKinnon A., Perczyk D., Roy J., Schaeffer R., Sims R., Smith P. and Wiser R. Annex III: Technology-specific cost and performance parameters. In: Climate Change 2014: Mitigation of Climate Change. Contribution of Working Group III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change . Cambridge University Press, Cambridge, United Kingdom and New York, USA.

Экология потребления.Наука и техника:Эта статья является продолжением темы развития энергетики на основе возобновляемых источников энергии (ВИЭ). Речь идёт о вкладе энергетики на возобновляемых источниках в эмиссию парниковых газов и, в целом, побочных экологических эффектах развития энергетики на основе ВИЭ.

Эта статья является продолжением темы развития энергетики на основе возобновляемых источников энергии (ВИЭ). Речь идёт о вкладе энергетики на возобновляемых источниках в эмиссию парниковых газов и, в целом, побочных экологических эффектах развития энергетики на основе ВИЭ. В ряде случаев отрицательные последствия возобновляемой энергетики для среды и общества могут быть велики - вопреки заявленным целям об улучшении экологических показателей, и каждый проект требует отдельного тщательного анализа. В целом, положительные и отрицательные экологические эффекты энергетики на ВИЭ - вопрос, ещё требующий дополнительных комплексных исследований.

Климатический аспект развития возобновляемой энергетики связан с «нулевой эмиссией CO2» при работе солнечных, ветряных, гидравлических и других энергетических станций на возобновляемых ресурсах. Действительно, в данных случаях выработка энергии идёт без сжигания углеводородного сырья и, как следствие, без выделения парниковых газов и других загрязнителей в атмосферу.

Однако ситуация сложнее, если рассматривать весь жизненный цикл производства, начиная с подготовительных стадий и включая побочные эффекты в процессе выработки энергии.

Для получения энергии необходимы изготовление и установка энергетического оборудования, создание инфраструктуры и обеспечение условий для его работы, подготовка сырья, утилизация отработанного материала и оборудования по истечении срока службы. Это требует работы металлургических, машиностроительных, сельскохозяйственных и других предприятий, использования энергии из ископаемых источников, и означает уже ненулевую эмиссию.

Учёт воздействий на окружающую среду на всех стадиях показывает, что переход к возобновляемой энергетике не всегда ведёт к снижению загрязнения среды, в том числе к снижению эмиссии CO2 и других парниковых газов.

Исследования побочных эффектов (в том числе экологических) возобновляемой энергетики в комплексе имеют сравнительно недавнюю историю, а в последнее время об этом заговорили активнее. Одна из недавних заметных работ - труд норвежского исследователя, научного сотрудника и руководителя проектов Западно-норвежского исследовательского института (Western Norway Research Institute, WNRI) Отто Андерсена (Otto Andersen) «Непреднамеренные последствия возобновляемой энергетики. Проблемы, требующие решения». Работа Андерсена использует ранее собранную разными исследователями информацию по отдельным видам энергии и регионам, на основе которых выстраивается обобщённая картина экологических рисков возобновляемой энергетики.

Ключевые понятия и подходы связаны с анализом жизненного цикла (Life Cycle Analysis, LCA) и оценкой так называемых «встречных эффектов», «эффектов отскока» или «обратных эффектов» - rebound effects, что в отечественной литературе переводят как «восстановительные эффекты» или, без перевода, «ребаунд-эффекты».

Основное внимание с позиций анализа жизненного цикла и встречных эффектов уделено биоэнергетике (выращиванию энергетических культур для производства биотоплива), солнечной фотовольтаической энергетике, некоторым аспектам водородной энергетики и использованию электромобилей.

Ряд вопросов остаётся открытым, исследования побочных эффектов в возобновляемой энергетике пока нельзя назвать достаточно хорошо изученной темой, хотя в предыдущие годы по данной тематике был проведён ряд локальных исследований и экспериментов.

Возобновляемая энергетика и эмиссия парниковых газов

Если говорить об эмиссии парниковых газов, то разные виды возобновляемой энергетики, по выражению Андерсена, вовсе не являются «равнозелёными» (equally green), если рассматривать их с позиций полного жизненного цикла. Основной показатель, с точки зрения эмиссии парниковых газов, связанной с производством энергии, используемый в том числе Андерсоном, - это количество грамм-эквивалента СО2 на единицу произведённой энергии, в частности, для электроэнергетики принимается 1 кВт·ч, то есть гСО2экв/кВт·ч.

В данном случае важна методика расчёта и исходные допущения - прежде всего, для какого интервала времени идёт расчёт, а также загрузка производственных мощностей (коэффициент использования установленной мощности, то есть КИУМ) и, соответственно, ожидаемая выработка энергии за определённый промежуток времени. Картина здесь та же, что и с расчётом выровненных затрат (Levelized Costs, LC) на производство единицы энергии. Чаще всего используется 20-летний интервал.

Анализ жизненного цикла даёт следующие показатели эмиссии для разных типов производства электрической энергии [гСО2экв/кВт·ч]: ветряная - 12; приливная - 15; гидравлическая - 20; океаническая волновая - 22; геотермальная - 35; солнечные (фотовольтаические) батареи - 40; солнечные концентраторы - 10; биоэнергетика - 230.

Это, однако, в любом случае на порядок меньше величин, приводимых для энергетики, работающей на ископаемом сырье : угольная - 820; газовая - 490. В то же время, самой «экологически безопасной», в данном смысле, является атомная энергетика, где показатель эмиссии гСО2экв/кВт·ч составляет всего 12, то есть этот параметр равен самым низким показателям энергетики на возобновляемых источниках. Очевидно, что распределение эмиссии парниковых газов по стадиям жизненного цикла производства для разных типов энергетики кардинально различается (рис. 1, табл. 1).

В случае с ветряной, солнечной, геотермальной и гидроэнергетикой основная экологическая нагрузка приходится на стадию производства материалов, оборудования и строительства станций. Сходная структура и у атомной энергетики. У энергетики, работающей на ископаемом топливе, основная часть эмиссии приходится на период работы станции, для которой необходимо сжигание топлива. То же верно и для биоэнергетики. Таким образом, здесь мы тоже можем провести аналогию со структурой затрат - в первом случае «экологические затраты» относятся, скорее, к категории постоянных, во втором - к категории переменных. В первом случае преимущества сильнее проявляются на более длительных интервалах времени. Во втором случае сократить разрыв в «углеродно-эмиссионной ёмкости производства» можно за счёт технологий, позволяющих сокращать расход топлива и систем улавливания парниковых газов. В данном случае, при сравнении «эмиссионной ёмкости» ветряных и угольных электростанций допускается временной интервал 20 лет и КИУМ ветростанций составляет 30-40 %.

Основное внимание с позиций анализа жизненного цикла и встречных эффектов уделено биоэнергетике (выращиванию энергокультур для производства биотоплива), солнечной фотовольтаической энергетике, некоторым аспектам водородной энергетики и использованию электромобилей

Следует учитывать, что выше приведены грубые усреднённые (медианные) значения, здесь не может быть большой точности. Очень много зависит от технологии и конкретных условий производства. Данные различных исследований и разных источников могут кардинально расходиться. В частности, для ветроэнергетики разброс может составлять от 2 до 80 гСО2экв/кВт·ч (onlinelibrary.wiley.com).

Для ГЭС показатель гСО2экв/кВт·ч может достигать 180. А «нижние» значения для электростанций на ископаемом топливе - 200-300 гСО2экв/кВт·ч.

Причины, по которым эмиссия парниковых газов может достигать высоких значений для жизненных циклов гидроэлектростанций, солнечных, биоэнергетических и геотермальных станций, различны. В случае с ГЭС это, прежде всего, формирование водохранилища при плотине, в котором может формироваться застойный режим с микро био логическим разложением органического материала в приплотинной зоне, что вызывает рост эмиссии СО2 и СН4 (метана). Сходные процессы возможны и в зонах приливных электростанций. В солнечной фотовольтаической энергетике основные проблемы связаны с процессом производства солнечных батарей, ведь среди прочих рисков для среды и здоровья он приводит к эмиссии ряда соединений фтора - гексафторэтана C2F6, трёхфтористого азота NF3, гексафторида серы SF6, являющихся мощными парниковыми газами. В случае с геотермальной энергетикой многое зависит от состава энергоносителя - термальной воды, отличающейся высокой температурой и минерализацией со сложным химическим составом. В процессе её использования и утилизации возможно как непосредственное тепловое загрязнение среды, так и выделение в почву, воду и атмосферу ряда химических соединений, включая парниковые газы.

Эмиссия парниковых газов при использовании биоэнергии происходит на всех стадиях. Прежде всего, она происходит на стадии выращивания энергетических культур, в частности, рапса и масличной пальмы. Интенсивная культивация рапса требует большого количества азотных удобрений, что ведёт к росту эмиссии мощного парникового газа - двуокиси азота N20, являющейся, кроме того, разрушителем озонового слоя.

В среднем, как видно, несмотря на ребаунд-эффект, эмиссия парниковых газов в жизненном цикле возобновляемых источников энергии остаётся существенно ниже по сравнению с невозобновляемыми энергетическими ресурсами (за исключением атомной энергетики)

Большие плантации масличной пальмы были созданы в Юго-Восточной Азии (Индонезии, Малайзии, Таиланде) на торфяно-болотных землях, являющихся естественными «ловушками» и «кладовыми» углерода, и на месте тропических и экваториальных дождевых лесов, выполняющих роль «лёгких планеты». Это вызвало быстрое разрушение почвенного покрова, нарушение естественного режима поглощения углерода и, соответственно, рост поступления парниковых газов (СО2 и СН4) в атмосферу. При худших сценариях масштабный переход от ископаемого к биотопливу может не уменьшить, а даже увеличить эмиссию парниковых газов на величину до 15 %.

Другой, пока практически неизученный аспект - возможное снижение общего альбедо (отражающей способности) Земли при масштабном распространении энергетических культур, что теоретически может стать фактором потепления климата.

На стадии эксплуатации - сжигания биотоплива (на транспорте и энергетических станциях), обычно производимого в смеси с ископаемым топливом, также образуются, как выясняется, новые химические соединения, несущие как токсическую, так и парниковую опасность. Рост эмиссии парниковых газов как следствие действий по её сокращению - один из примеров ребаунд-эффекта.

В среднем, как видно, несмотря на этот эффект, эмиссия парниковых газов в жизненном цикле возобновляемых источников энергии остаётся существенно ниже по сравнению с невозобновляемыми энергетическими ресурсами (за исключением атомной энергетики).

В то же время, это далеко не во всех случаях так, и каждый конкретный проект или программа развития энергетики на возобновляемых источниках требует тщательного анализа, в том числе с экологических позиций - всегда заведомо «более зелёными» по сравнению с другими вариантами их считать нельзя.

Другие побочные эффекты

Помимо эмиссии парниковых газов в качестве встречного эффекта, энергетика на ВИЭ имеет и другие побочные экологические последствия. ГЭС и приливные электростанции меняют режимы течений и температур рек и морских заливов, становятся барьерами на путях миграции рыб и других потоков вещества и энергии. Кроме того, один из существенных побочных эффектов ГЭС - затопление территорий, пригодных для расселения, сельскохозяйственной и другой деятельности.

При этом на берегах водохранилищ при ГЭС могут развиваться оползневые процессы, возможны изменения местных климатических условий и развитие сейсмических явлений. Застойный водный режим в водохранилищах способен провоцировать не только рост эмиссии парниковых газов, но и накопление вредных веществ, представляющих угрозу в том числе для здоровья человека.

Отдельную опасность могут представлять прорывы и обрушения плотин ГЭС - особенно в горных и сейсмоопасных районах. Одна из крупнейших катастроф такого рода произошла в 1963-м году на реке Вайонт (Vajont) в итальянских Альпах, где в водохранилище при плотине ГЭС сошёл гигантский оползень, вызвавший перелив волны через плотину и образование «цунами» высотой до 90 м. Огромной волной было снесено несколько населённых пунктов, погибло более 2000 человек.

Геотермальная энергетика несёт риски химического загрязнения воды и почвы - термальные флюиды, помимо углекислого газа, содержат сульфид серы H2S, аммиак NH3, метан CH4, поваренную соль NaCl, бор B, мышьяк As, ртуть Hg. Возникает проблема утилизации опасных отходов. Кроме того, возможны коррозионные разрушения конструкций самих термальных станций, а выкачивание термальной воды может вызывать деформации слоёв горных пород и локальные сейсмические явления, сходные с теми, что возникают при любом горнодобывающем производстве или заборе межпластовых грунтовых вод.

Биоэнергетика связана с отчуждением сельскохозяйственных земель (и других ресурсов) для выращивания энергетических культур, что при масштабном переходе к использованию биоэнергии может обострить продовольственную проблему в мире.

Самый грубый расчёт показывает, что выращивание рапса или подсолнечника в качестве сырья для биотоплива может дать в итоге около тонны биотоплива с 1 га обрабатываемой земли. Общий объём потребления энергии в мире достигает 20 млрд тонн в год в нефтяном эквиваленте. Замещение этого объёма биотопливом всего на 10 %, или на 2 млрд тонн, потребовал бы отчуждения порядка 2 млрд га земли, то есть около 40 % всех сельскохозяйственных угодий мира или 15 % всей площади земной суши, исключая Антарктиду. Масштабное распространение энергетических монокультур снижает биоразнообразие, как прямо, так и косвенно, через ухудшение условий обитания многих видов флоры и фауны.

На стадии сжигания биологического топлива, в частности, на транспорте, при его смешивании с ископаемым топливом (обычным дизелем или бензином) и использовании добавок, позволяющих лучше работать в зимних условиях, идёт образование новых химических соединений, токсичных и канцерогенных по своим свойствам. Это показали, в частности, наблюдения и эксперименты в рамках исследования «Влияние биокомпонентного состава топлива на эмиссию дизельных двигателей и ухудшение дизельного масла» (Influence of biocomponents content in fuel on emissions from diesel engines and engine oil deterioration).

В этой связи сравнительно предпочтительной выглядит водорослевая энергетика - получение энергетического сырья из водорослей. Среди известных культур - такие как Botryococcus bran-nil и Arthrospira (Spirulina) platensis. Водоросли, по сравнению с «сухопутными» энергокультурами, отличаются более высокой (в определённых условиях - на порядок выше) продуктивностью на единицу площади в единицу времени и более высоким содержанием жиров (липидов) - исходного сырья для производства биотоплива. Кроме того, выращивание водорослей не связано с отчуждением продуктивных сельскохозяйственных земель, созданием сложных конструкций и оборудования, использованием большого объёма удобрений. При этом водоросли - один из мощных поглотителей углекислого газа и продуцентов кислорода. В связи с этим, это направление возобновляемой энергетики, пока недостаточно разработанное, можно считать весьма перспективным и с производственных, и с экологических позиций.

Ветроэнергетика - наименее опасная с точки зрения эмиссии парниковых газов и загрязняющих веществ, вызывает в то же время ряд претензий экологов по другим позициям. Они включают шумовое загрязнение местности, «эстетическое загрязнение», риск воздействия вращающихся лопастей на психику. Другая группа претензий связана с воздействием на фауну - в частности, ветряки могут отпугивать птиц и вызывать их гибель при столкновении с лопастями.

Проблема, также нарастающая со временем, особенно по мере строительства офшорных (морских) ветростанций - проблемы с доступностью для сервисных и аварийных служб, затруднения в обслуживании, устранении поломок и аварийных ситуаций, в частности, при возгорании ветрогенераторов

Накопленный опыт эксплуатации ветрогенераторов, насчитывающий в Западной Европе уже около 20 лет, показывает, что эти претензии носят скорее умозрительный характер - во всяком случае, при данной плотности ветрогенераторов и соблюдении определённых мер безопасности, в частности, размещение ветрогенераторов на расстоянии не менее нескольких сотен метров от жилых кварталов. Более реальными выглядят другие проблемы. Одна из них очевидна - ветроэлектростанции требуют больших площадей, и существуют некие пределы их установки на территориях с высокой плотностью населения и инфраструктуры. Другая проблема, становящаяся со временем всё более насущной - утилизация отработавших свой ресурс лопастей ветротурбин, построенных из композитных материалов и несущих высокий потенциал загрязнения среды.

Следующая проблема, также нарастающая со временем, особенно по мере строительства офшорных (морских) ветростанций - проблемы с доступностью для сервисных и аварийных служб, затруднения в обслуживании, устранении поломок и аварийных ситуаций, в частности, при возгорании ветрогенераторов.

Все перечисленные выше проблемы могут усилиться, создавая мультипликативный эффект, при более широком распространении ветроэнергетики. В настоящее время на неё приходится около 9 % общего объёма производства электроэнергии в Германии, около 5 % в Италии, 18 % - в Испании. В других крупных странах-производителях электроэнергии это существенно меньшая доля, в среднем же в мире она составляет около 2,5 %. К каким эффектам может привести наращивание ветроэнергетических мощностей в два-три раза и более - отдельный вопрос для изучения.

В солнечной энергетике основные экологические риски связаны с использованием большого количества токсичных и взрывных компонентов при изготовлении солнечных батарей. В частности, солнечные батареи содержат теллурид кадмия CdTe, сульфид кадмия CdS, арсенид галлия GaAs, а в процессе производства используется фтор, создающий ряд токсичных соединений. Это создаёт проблемы сначала на стадии производства, а затем на стадии утилизации батарей, отработавших свой ресурс. Эта проблема также неизбежно будет нарастать со временем. Другая проблема производства солнечных батарей - большие объёмы потребления воды. По американским данным, потребление воды высокой степени очистки для производства 1 МВт мощностей - около 10 л/мин.

Интегральный показатель, применяемый для оценки вреда того или иного вида деятельности для общества и среды, - это внешние, или экстернальные издержки (external costs), не включённые в цену продукта издержки, которые несёт общество в целом, то есть причинённый социально-экономический и социально-природный ущерб. Внешние издержки включают в себя вред для здоровья людей, коррозию и другие повреждения, наносимые материалам и конструкциям, снижение урожаев и др.

В оценке внешних издержек многое зависит от исходных допущений, они могут резко различаться по странам. В частности, для стран ЕС диапазон внешних издержек производства электроэнергии (евроцентов за кВт·ч) для различных источников энергии составляют (по данным ec.europa.eu): уголь - 2-15; нефть - 3-11; газ - 1-4; атомная энергия - 0,2-0,7; биомасса - 0-5; гидроэнергия - 0-1; солнечная (фотовольтаическая) энергия - 0,6; ветер - 0-0,25.

Для Германии (крупнейшего производителя электроэнергии в Европе с широким развитием энергетики на основе возобновляемых источников энергии) внешние маржинальные (переменные) издержки производства электроэнергии различными источниками оцениваются в следующие величины (евроцентов за кВт·ч): уголь - 0,75; газ - 0,35; атомная энергия - 0,17; солнечная - 0,46; ветряная - 0,08; гидроэнергия - 0,05.

Здесь мы также видим, что энергетика на ВИЭ несёт в среднем заметно меньшие издержки для общества, чем получение энергии из ископаемого сырья.

В то же время, атомная энергетика обнаруживает не менее высокую экологическую конкурентоспособность, несмотря на то, что в связи с известными катастрофами на АЭС в Чернобыле и Фукусиме её репутация в глазах общества заметно подорвана.

Развитие энергетики на ВИЭ требует дополнительного использования невозобновляемых ресурсов: сырья для удобрений в случае с биоэнергетикой, металла для оборудования и строительных конструкций, ископаемого природного газа для производства водородного топлива, энергии из ископаемых источников для работы данных производств

Дополнительные сложности и проблемы связаны с тем, что стадии жизненного цикла могут быть распределены по разным странам. В частности, начальные стадии, на которые приходится основная часть внешних издержек, такие, как выращивание энергетических культур или производство солнечных батарей, чаще проходят за пределами Европы и Северной Америке. Так, на данный момент почти 60 % всех солнечных батарей в мире производится в Китае.

Операционная стадия, на которую в случае с ВИЭ приходится минимальная доля издержек, связана с западными странами - потребителями «зелёной» энергии, а издержки завершающей стадии - утилизации, также могут выноситься в другие регионы.

Иными словами, в случае с энергетикой на основе ВИЭ также возможны ситуации, когда основные выгоды получают одни группы, а издержки ложатся на других. Распределение выгод и издержек - также важный вопрос, имеющий уже социальное измерение.

Фундаментальная же проблема состоит в том, что развитие энергетики на ВИЭ требует дополнительного использования невозобновляемых ресурсов: сырья для удобрений в случае с биоэнергетикой, металла для оборудования и строительных конструкций, ископаемого природного газа для производства водородного топлива, энергии из ископаемых источников для работы данных производств. Соответственно, наращивание производства энергии за счёт ВИЭ будет требовать и роста потребления невозобновляемых ресурсов. Положение вещей, при котором можно будет говорить о безусловном успехе и состоятельности возобновляемой энергетики - создание полных производственных циклов, где производство возобновляемой энергии обеспечивается из возобновляемых же источников. опубликовано

Лекиця 4

Альтернативная энергетика.

Проф.И.Хузмиев

Общие положения.

Возобновляемые источники энергии (ВИЭ)- это солнечное излучение, энергия ветра, энергия малых рек и водотоков, приливов, волн, энергия биомассы (дрова, бытовые и сельскохозяйственные отходы, отходы животноводства, птицеводства, лесной, деревообрабатывающей и целлюлозно-бумажной промышленности, лесозаготовок), геотермальная энергия, малых рек и водотоков, приливов, волн, геотермальная энергия, а также рассеянная тепловая энергия (тепло воздуха, воды океанов, морей и водоёмов) (Рис.2.1.)

Рис.2.1. Мощность возобновляемых источников энергии, поступающих на землю и направления их использования.(степень, означает 11 )

: http://user.ospu.odessa.ua/~shev/emd_m/nie/doklad.htm

Массовое использование возобновляемых и нетрадиционных источников энергии (Таблица 2.1.) являетсяодним из способов решения энергетической, экологической и продовольственной проблем, которые сегодня стоят перед всем мировым сообществом (таблица 2.2.).Их использование необходимо рассматривать с позиций системного подхода, одно из важнейших требований которого заключается в рассмотрении технических систем во времени (жизненный цикл) и в пространстве (внешняя среда).

Способы использования возобновляемых источников энергии

Таблица 2.1.

Роль ВИЭ в решении трёх глобальных проблем Таблица 2.2.
Вид ресурсов или установок Энергетика Экология Продовольствие
Ветроустановки + + +
Малые и микроГЭС + + +
Солнечные тепловые установки + + +
Солнечные фотоэлектрические установки + + +
Геотермальные электрические станции + +/-
Геотермальные тепловые установки + +/- +
Биомасса. Сжигание твёрдых бытовых отходов + +/-
Биомасса. Сжигание сельскохозяйственных отходов, отходов лесозаготовок и лесопереработок + +/- +
Биомасса. Биоэнергетическая переработка отходов + + +
Биомасса. Газификация + +
Установки по утилизации низкопотенциального тепла + +
Биомасса. Получение жидкого топлива + + +

Положительное влияние;



Отрицательное влияние;

0 отсутствие влияния.

Под жизненным циклом обычно понимается структура процесса разработки, производства, эксплуатации. Он включает следующие стадии:

Формирование требований к системе;

Проектирование;

Изготовление, испытание и доводку опытного образца;

Серийное производство;

Эксплуатация;

Модернизация;

Первые три стадии называют внешним проектированием или макропроектированием. Здесь определяются: цели системы, определяются граничные условия, исследуются свойства внешней среды, механизмы и параметры системы, ее количественные характеристики и связи и как результат формулируется техническое задание на разработку проекта. Например, рассмотрим проблему энергоснабжения удаленных и мобильных потребителей, которым необходимо энергоснабжение, но в силу различных причин (удаленность, трудности рельефа и т.д.) оно затруднено или невозможно. Проблемы энергоснабжения таких потребителей решаются несколькими путями с помощью:

Различных видов классического топлива;

Энергии, запасенной в химических процессах;

Возобновляемых, нетрадиционных источников энергии и их комбинацией;

Использование нетрадиционных решений для обеспечения энергией отдельных потребителей позволит повысить социально-культурный уровень жизни работников, снизить издержки производства, повысить надежность и качество энергоснабжения на базе местных ресурсов, снизить антропогенное воздействие на окружающую среду. Поэтому для указанных выше потребителей необходимо активизировать строительство малых и микро ГЭС, использование энергии ветра, солнца, геотермальных и биоэнергетических источников. Все они обладают своими преимуществами и недостатками (Таблица 2.3.).

Сравнение ВИЭ с централизованными источниками

Таблица 2.3..

Источник Стоимость Единицы Стоимость ед. уст. мощности Уд. показ., масса на Надежность электро- снабжения Квалифик. обслуж. Эколог.
энергии произв. Энергии Ед. уст. Мощности персонала опасность
1. Невозобновляемые Высокая Средняя Высокая Высокая Высокая Высокая
2. Химические Высокая Высокая Высокая Высокая Высокая Высокая
3. Возобновля-емые Низкая Высокая Средняя Средняя Низкая Низкая
4. Малая гидроэнерг. Низкая Средняя Средняя Высокая Низкая Низкая

Особый интерес возобновляемые источники энергии представляют для потребителей, расположенных в отдаленных местах, где население в основном занимается сельскохозяйственным производством (Таблица 2.4.). Классические системы энергоснабжения нуждаются в постоянной доставке к местам потребления дорогого жидкого топлива стоимостью с учетом доставки около 2$ за 1 литр, строительства линии электропередачи стоимостью более 20 тыс.$ за 1км и возведение электростанций при цене ориентировочно 1000$ за 1 кВт установленной мощности. Нетрадиционные решения же, основанные на первичных источниках энергии, имеющихся на месте потребления, хорошо вписываются в программы сбалансированного развития отдаленных регионов.

Потребители энергии в домашнем хозяйстве

Таблица 2.4..

Бытовые потребители. Технологические потребители.
Приготовление пищи, Микроклимат в технологических помещениях
Отопление и кондиционирование Орошение и водоснабжение
Водоснабжение и водоотведение Кормоприготовление
Освещение, Уход за животными, лечение
Нагрев воды для бытовых целей, Вакцинация
Радио, телевидение, связь, Получение продукции в животноводстве и аквакультуре
Энергоснабжение бытовых процессов Уборка и утилизация отходов
(уборка, мойка посуды, стирка, шитье Технологии в растениеводстве
И т.д.), Транспортные операции
Санитарно-гигиенические Сушка, первичная обработка и хранение продукции
Мероприятия, Технологии строительства

Основной целью развития нетрадиционной энергетики должно быть рациональное использование природных ресурсов, в том числе и энергетических, с сохранением экологического равновесия и социальной стабильности. При этом должны решаться следующие задачи:

Повышение уровня жизни населения с помощью автономных систем энергоснабжения на базе возобновляемых источников энергии,

Снижение потребности в дровах, замедление процесса сведения растительного покрова, повышение эффективности землепользования,

Сокращения импорта нефтепродуктов и развитие собственной энергетической базы,

Стабилизация цен на энергоносители и обеспечение бесперебойного энергоснабжения,

Подготовка квалифицированного персонала в области производства и потребления энергоресурсов и их эффективного использования.

Возобновляемые источники энергии - практически неисчерпаемы и всегда доступны благодаря быстрому распространению современных технологий. Их использование соответствует стратегии использования различных энергетических источников. Возобновляемые ресурсы являются общепризнанным способом защиты экономики от ценовых колебаний и будущих расходов по защите окружающей среды. Технологии, основанные на использовании возобновляемых источников энергии, являются экологически чистыми из-за отсутствия выбросов загрязняющих веществ в атмосферу. Их применение не вызывает образование парникового эффекта и, соответственно, связанных с ним климатических изменений, и не приводит к образованию радиоактивных отходов.

Использование ВИЭ позволяет:

  • Повысить энергетическую безопасность стран, зависящих от поставок углеводородного сырья. Использования ВИЭ является альтернативой энергоснабжению в условиях роста цен на нефть и природный газ.
  • Улучшить снизить эмиссию парниковых газов, в соответствии с Киотским протоколом и улучшить экологическое состояние окружающей среды.
  • Создать новые образцы высокоэффективного конкурентного в море энергетического оборудования
  • Сохранить запасы имеющегося энергетического сырья
  • Увеличить ресурсы углеводородов для технологического применения

Применение ВИЭ тормозится по следующим причинам:

· Отсутствие необходимых Законов и нормативных актов по развитию и поощрению потребителей и бизнесменов по применению ВИЭ. Отсутствие государственных органов управления по управлению процессами внедрения ВИЭ.

· Низкий платежеспособный спрос населения и организаций. Многие субъекты РФ - дотационные, нет экономических стимулов для вложения инвестиций (налоговые льготы, льготные кредиты), отсутствие утвержденной федеральной целевой программы, Отсутствие механизмов финансирования и возврата вложенных средств, недостаточный уровень экономических знаний организаций, принимающих решения.

· Отсутствие по некоторым видам ВИЭ готовых систем энергоснабжения, низкий уровень стандартизации и сертификации оборудования, неразвитость инфраструктуры, отсутствие обслуживающего персонала, недостаточный объём научно-технических и технологических разработок, недостаточный уровень технических знаний организаций, принимающих решения.

· В связи с тем, что Россия богата энергоресурсами, потребители относятся к ним как к нечто бесконечному и общедоступному. Этому также способствует их относительная дешевизна по сравнению с мировыми ценами.

· Неосведомленность населения, руководителей и общественности о возможностях ВИЭ. Отсутствие пропаганды в средствах массовой информации о свойствах ВИЭ и примеров их использования..

Наше будущее в значительной степени зависит от применения технологических инноваций. Возобновляемые источники энергии смогут в течение будущих десятилетий влиять на изменение общества в целом. Согласно прогнозам значение и доля возобновляемых источников энергии в общем процессе получения энергии будет возрастать. Эти технологии не только сокращают глобальную эмиссию СО 2 , но и придают необходимую гибкость процессу энергопроизводства, делая его менее зависимым от ограниченных запасов ископаемого топлива. По единому мнению экспертов в течение некоторого периода времени гидроэнергетика и биомасса будут доминировать над другими видами возобновляемых источников энергии. Однако, в ХХI веке первенство на энергорынке будет принадлежать ветроэнергетике и солнечной энергетике, которые сейчас активно развиваются. На современном этапе ветроэнергетика является самой быстрорастущей отраслью производства электроэнергии. В некоторых регионах уже сегодня ветроэнергетика конкурирует с традиционной энергетикой, основанной на использовании ископаемых видов топлива. В конце 2002 года установленная мощность ветростанций во всем мире превысила 30000 МВт. В то же время очевиден явный рост интереса во всем мире к солнечным электростанциям, хотя ее сегодняшняя себестоимость в два –три раза выше себестоимости традиционной энергетики. Фотоэлектричество особенно привлекательно для удаленных областей, не имеющих подключения к общей энергосистеме. Передовая тонкоплёночная технология, применяемая для производства фотоэлектрических батарей активно внедряется в крупномасштабное коммерческое производство.

Такие большие энергокомпании, как Энрон, Шелл и Бритиш Петролеум за последнее время много инвестировали в развитие фото и ветроэнергетики. Это является одним из самых убедительных фактов перспективного будущего возобновляемой энергетики. Большие инвестиции со стороны ведущих мировых энергокомпаний планируются также и в развитие других видов ВИЭ. Одним из наиболее перспективных рынков применения ВИЭ в ближайшие 20 лет во всем мире станут развивающиеся страны, испытывающие сегодня проблемы с нехваткой энергии. Для многих стран привлекательным является мобильный характер этих технологий. Установки, работающие на ВИЭ, можно разместить близко к пользователям. Кроме того, их монтаж быстрее и дешевле по сравнению со строительством больших тепловых электростанций, требующей протяженных линий электропередач. Возобновляемые источники энергии также пользуются спросом и в промышленно развитых странах. Опрос общественного мнения, проведенный в США, показывает, что большая часть энергопотребителей страны согласна платить больше за "зелёную" (экологически чистую) энергию, и многие энергетические компании могут им ее предложить. В Европе благодаря сильной общественной поддержке быстро растет рынок возобновляемых источников энергии.

Различные сценарии развития показывают, что доля использования возобновляемых источников энергии к 2010 году будет составлять от 9,9% до 12,5%. Поставленная цель, составляющая 12%, ("амбициозная, но реально выполнимая"), должна быть достигнута за счет установки 1 млн. "солнечных крыш", установленной мощности ветростанций, равной 15000 МВт и 1000 МВт установленной мощности в области биоэнергетики. Современная доля ВИЭ в энергопроизводстве, составляющая 6%, включает и большую гидроэнергетику, развитие которой в дальнейшем не планируется из-за негативного воздействия на окружающую среду. Увеличение доли ВИЭ должно быть обеспечено за счет развития энергетического использования биомассы, ветроэнергетики (установленная мощность ВЭС должна достигнуть 40 ГВт). Планируется установка 100 миллионов квадратных метров солнечных коллекторов. Ожидается увеличение установленной мощности ФЭБ до 3 ГВт э, геотермальных установок до 1 ГВт т, а тепловых насосов - до 2.5 ГВт т. Общая сумма капиталовложений достигнет 165 миллиардов евро (1997-2010 гг.), будет создано до 900000 новых рабочих мест, выбросы СО 2 уменьшатся на 402 млн.. тонн. Исходя из того, что ВИЭ сегодня обеспечивают менее 6% энергопотребления стран ЕС, необходимо объединить усилия для увеличения этой доли. Это, в свою очередь, создаст возможность для экспорта энергии и улучшения экологии. В настоящее время Европа импортирует более 50% энергоносителей, и если не принять срочных мер, то эта цифра может возрасти до 70% к 2020 году.

По оценкам Европейской Ассоциации Ветроэнергетики, установка ветростанций общей мощностью 40 ГВт, позволит создать дополнительно до 320 000 рабочих мест. По данным Ассоциации Фотоэлектрической Промышленности, установка 3 ГВт э создаст 100000 рабочих мест. Федерация Солнечной Энергетики считает возможным обеспечить 250000 рабочих мест, действуя только для нужд внутреннего рынка и еще 350000 рабочих мест могут быть созданы в случае работы на экспорт. White Paper предлагает ряд налоговых стимулов и других финансовых мер для поощрения инвестиций в область возобновляемых источников энергии, а также меры поощрения использования пассивной солнечной энергии. Согласно этому документу: "Поставленная цель удвоить текущую долю возобновляемых источников энергии до 12% к 2010 году - реально выполнима". Доля возобновляемых источников энергии в производстве электричества может вырасти от 14% до 23% и более к 2010 году, если принять соответствующие меры. Создание рабочих мест - один из наиболее важных аспектов, характеризующих развитие возобновляемой энергетики. Потенциал занятости населения в области возобновляемых источников энергии можно оценить по следующим данным:

Необходимо отметить, что при сравнении различных источников энергии цена является ключевым параметром. Возобновляемые источники энергии зачастую считаются более дорогостоящими по сравнению с ископаемым топливом. Такое заключение обычно основывается на неправильной оценке затрат. Когда мы оплачиваем счет за электроэнергию или заполняем бак своего автомобиля, мы обычно оплачиваем неполную цену за энергию. Цена не включает в себя всех затрат. Существует много скрытых затрат, связанных с использованием энергии. Скрытые социальные и экологические затраты, риск, связанный с использованием ископаемых видов топлива - основные барьеры к коммерциализации возобновляемых технологий. Общепризнано, что современные рынки игнорируют эти затраты. На самом деле, на мировом энергорынке предпочтение отдается загрязняющим источникам энергии, например, серосодержащим - углю и нефти, а не экологически чистым возобновляемым источникам. До тех пор, пока традиционные технологии способны перекладывать на общество существенную часть своих затрат, связанных с загрязнением окружающей среды и расходами на здравоохранение, возобновляемые источники, будут находиться в неравных условиях. И это несмотря на то, что ВИЭ практически не ухудшают состояние экологии и даже дают такие положительные эффекты, как создание рабочих мест, особенно в сельской местности. Поэтому для создания рынка, действующего по правилам "честной игры", необходим учет всех этих затрат.

Очень трудно оценить затраты, связанные с экологическим загрязнением, а некоторые из них даже трудно определить. Тем не менее, проведенные исследования доказывают их существенные размеры. Например, согласно исследованиям немецких ученых, затраты на производство электроэнергии ископаемых видов топлива, не включая затраты, связанные с решением проблемы глобального потепления, составляют 2,4-5,5 амер. цента/кВт*ч. В то же время стоимость электроэнергии, выработанной атомными электростанциями, - 6,1-3,1 амер. цента/кВт*ч. Согласно другому исследованию, выбросы SO 2 при сжигании угля на американских электростанциях ежегодно обходятся гражданам США в 82 миллиарда американских долларов - дополнительно для возмещения ущерба, нанесенного здоровью людей. Сокращение сельскохозяйственных урожаев, вызванное загрязнением воздуха, обходится американским фермерам в 7,5 млрд. американских долларов в год. Важным является тот факт, что граждане США фактически ежегодно оплачивают скрытые затраты, связанные с использованием энергии, в размере примерно 109-260 млрд. долларов. Подобные примеры могут быть приведены для других стран. Если бы дополнительные затраты включались в рыночные процессы, технологии по применению ВИЭ оказались бы в более выгодном положении, конкурируя с ископаемыми видами топлива. Тогда мы могли бы говорить о существенном проникновении ВИЭ на мировой энергетический рынок уже сегодня.

Источник : http://www.ecomuseum.kz/dieret/why/why.html

Однако все эти методики не учитывают воздействия на основу основ физиологического существования человека – поверхностный слой почвы.
Оценка установок по приведенным затратам и сроку окупаемости – не единственный показатель, по которому можно судить об эффективности использования возобновляемых источников. Помимо всего прочего, такими установками вырабатывается «зеленая» энергия, не приводящая к снижению плодородия почвы. Кроме того, не учитываются дополнительные социально-экологические преимущества, получаемые при использовании систем возобновляемой энергетики.

Народнохозяйственный эффект

Рассмотрим дополнительную эколого-социально-экономическую эффективность системы возобновляемой энергетики, связанную с сохранением плодородия почв, по сравнению с традиционным энергоснабжением от топливной энергетики.

Как видим, народнохозяйственный эффект использования любой технологии ВИЭ может состоять не только в производстве электроэнергии, холода и теплоты, но и в сохранении при этом плодородия почвы (в том числе за счет использования зимой биометана). Это принципиальное преимущество возобновляемой энергетики, и его необходимо учитывать при определении эффективности ее использования.

Полезный результат в этом ракурсе может быть представлен в виде суммы полученной «зеленой» энергии и предотвращенного ущерба от деградации почвы.

Это применимо ко всем технологиям использования ВИЭ и позволяет учесть принципиальную особенность таких установок – возобновляемость. Обычно при сравнении энергоустановок, использующих ВИЭ и органическое топливо, учитывается только собственно выработка энергии. Например, считается, что гелиоустановка эффективна, если затраты на нее не превышают затрат на топливо, которое израсходует установка такой же мощности на органическом топливе. А такое преимущество при использовании, например, энергии Солнца, как сохранение гумуса, остается вне поля зрения.

Экономия ресурсов Земли становится все более важной задачей, и учет многогранных последствий от их сохранения, несомненно, будет давать более объективную оценку эффективности использования ВИЭ.

Народнохозяйственный эффект от сохранения гумуса в земле при использовании ВИЭ можно оценивать как Э = kпот × Вт × ц, где Вт – количество гумуса, сэкономленного в экосистеме, которое раньше расходовалось на выращивание растительной продукции, используемой в качестве топлива при самозаготовке, kпот – коэффициент, учитывающий прирост первичного гумуса при нахождении «пашни под парами», ц – удельная оценка (цена) сохранения гумуса в почве.

При определении эффективности системы энергетики ВИЭ требуется учет не только денежных ресурсов (капитальных вложений, текущих затрат), но также сырьевых – экономия удобрений, чистой воды на полив и т. д.

Так, солнечная энергия является экологически чистым видом топливно-энергетического ресурса, что необходимо учитывать в виде экологического эффекта. Воздействие выбросов (СО2) при сжигании биометана на окружающую среду условно принимаем нулевым, поскольку в природных условиях из органической биомассы (отходов), которая обеспечила получение биометана в биореакторе, в атмосферу за счет естественного брожения выделился бы биометан. А вот преобразование органических отходов в биометан и удобрения необходимо учитывать в виде экологического эффекта, уменьшающего загрязнение почвы и окружающей среды далеко не безвредными концентрированными отходами животноводства.

Использование биометана не требует очистных сооружений для биогазовых установок (очистка биогаза от вредных газов осуществляется в технологическом цикле установки). Поэтому экологический эффект может быть учтен как предотвращенный ущерб благодаря отсутствию вредных сбросов в почву.

Ущерб для экосистемы

Удельный ущерб при одинаковых выбросах в атмосферу для каждой экосистемы свой. Можно определять экологический эффект как предотвращенный ущерб почве благодаря уменьшению вредных выбросов при добыче и транспортировке энергоносителя.

При оценке ущерба водным объектам можно исходить из уровня содержания растворимого кислорода в воде и органических отходов.
Так же как и при загрязнении почвы и воздуха, почти нет предела разнообразию загрязнителей, которые могут сбрасываться и сбрасываются в водную среду. Основные источники органических разлагаемых загрязнителей вод – это промышленность, ТЭЦ, ТЭС, сельское хозяйство, бытовое хозяйство и слив дождевых вод в городах. Если сброс органических загрязнителей в конкретном месте не слишком велик, то содержание кислорода в реке (водоеме) сначала уменьшается до определенного уровня, а затем снова восстанавливается (при условии, что не происходит других сбросов по течению реки). А если объем сброшенных в воду органических веществ превышает определенный уровень, процесс их разложения может привести к истощению растворимого кислорода.

Ущерб от промышленных стоков, как известно, очень высок – содержание кислорода в воде резко снижается.

Высокие уровни содержания растворимого кислорода (7‑8 мг / л) необходимы для некоторых ценных видов рыбы (8‑10 мг / л – стадия насыщения кислородом в большинстве водоемов в летний период). Для большинства же рыб вполне подходящи 4‑5 мг / л. Однако при уровне ниже 2‑3 мг / л могут выживать только некоторые.

Кроме уменьшения растворимого кислорода, сброс органических отходов может иметь и другие нежелательные последствия. В ходе разложения органики образуются питательные вещества для водорослей, стимулирующие их рост. Опасность чрезмерного роста водорослей – одна из наиболее трудноразрешимых задач в управлении качеством водной среды, особенно в озерах, заливах и эстуариях.

Неразлагаемые загрязнители вод не перерабатываются речной биотой. Для большинства из этих загрязнителей единственные существенные изменения, которые могут происходить в поверхностных водах, – растворение и осаждение, в подземных водах – осаждение и абсорбция. Эта группа состоит из различных неорганических химикатов, включая тяжелые металлы, частицы почвы и разные типы коллоидных веществ. Когда все эти вещества накапливаются в достаточно больших объемах, они могут оказаться ядовитыми по отношению к некоторым формам жизни, порождать неприятные запахи, увеличивать жесткость воды и, особенно в присутствии хлоридов, вызывать коррозию металлов.

Вода в ряде случаев становится непригодной для орошения и полива, причем не только для выращиваемого урожая. Ее гнилость наносит ущерб почве, выводя целые поля из севооборота.

Как понизить нагрузку на биосферу

Использование ВИЭ позволяет существенно уменьшить нагрузку на биосферу, понизить эргодемографический индекс территории.
Определенный интерес представляет использование отходов сжигания, например, угля, торфа и сланцев. Зола угольная и сланцевая широко используется для раскисления почв и производства стимуляторов роста растений. Зола торфа востребована в фармакологии.

При сооружении, например, для системы энергоснабжения котлованов под солнечный соляной пруд (ЭПР № 19 (255) за 2014 г.) верхний плодоносный слой земли (чернозем, гумус) может быть продан, а значит, эффект от его реализации будет снижать стоимость системы. А если он будет использован для улучшения плодородия почвы собственника системы, то эффект будет выражаться в повышении урожая выращиваемых культур, компенсируя уменьшение площади участка, использованной под пруд.

При использовании солнечной энергии, энергии воды и биометана отсутствуют риски, возникающие, например, при использовании угля и сжиженного газа, распространения вредных организмов и сорных растений транспортными средствами.

Санитарный эффект (отсутствие последствий фитосанитарного контроля и т. п.) тоже может быть учтен как предотвращенный ущерб благодаря отсутствию завоза топлива при использовании системами солнечной энергии и биометана.

Антропогенное воздействие

При нынешних темпах развития цивилизации не получается резервировать слишком большие участки природы и тратить на ее охрану слишком много средств, т. к. это приводит к большим экономическим потерям для общества.

Резкое ухудшение экологической обстановки в России связано с тем, что многие выбрасываемые в окружающую среду вещества, в том числе канцерогенные, в форме твердых частиц или в растворенном состоянии накапливаются в ней. В связи с этим на установленные сегодня уровни предельно допустимых концентраций (ПДК) постоянно ориентироваться нельзя. Для поддержания качества окружающей среды на приемлемом уровне необходимо со временем изменять ПДК в сторону ужесточения, что не практикуется.

Более 99 % всех выбросов ТЭС поступает в атмосферу из дымовых труб, создавая наибольшие приземные концентрации на расстоянии нескольких километров от ТЭС в зависимости от скорости ветра и его направления.

В настоящее время самым мощным источником поступления радионуклидов в окружающую среду являются объекты ТЭК на органическом топливе – угле, сланце, нефти. При сгорании органического топлива в атмосферу с дымовыми выбросами поступают радиоактивные элементы и продукты их распада. Доза в результате выбросов угольной ТЭЦ существенно (в 5‑40 раз) больше, чем АЭС равной мощности, даже если принять коэффициент очистки выбросов золы ТЭЦ равным 0,975. А очистка дымовых газов – дорогое удовольствие, капитальные затраты на сооружение блоков очистки ТЭС составляют 186‑264 тыс. долларов на 1 МВт установленной мощности.

По оценкам специалистов Института проблем рынка РАН, прямой годовой экономический ущерб вследствие негативных антропогенных воздействий на окружающую среду в России в середине 90‑х годов составлял порядка 10 % от величины ВВП.

Использование биомассы

На государственном уровне годовой экономический результат от энергетики ВИЭ может проявляться в стоимости сохраненных для будущих поколений природных ресурсов (нефти, угля, газа), в возможном увеличении прибыли от продажи экспортно-ориентированных видов природных ресурсов, а также в выручке от продажи квот на выброс парниковых газов (СО, СО 2) в соответствии с Киотским протоколом.

Кроме того, в этот годовой экономический эффект должны включаться выгоды, связанные с пропорциональным уменьшением образования отходов.

В настоящее время часть мирового сообщества, обеспокоенная выбросами СО 2 усиленно пропагандирует использование биомассы. Мотивация такова: при сжигании биомассы действительно выделяется СО 2 , но он ранее был поглощен растениями из атмосферы, поэтому биомасса считается нейтральной с точки зрения выбросов СО 2 при условии возобновления зеленых насаждений в достаточном объеме.

Однако не все так просто и здесь. Использование биомассы в качестве энергоресурса биологи считают следствием невежества, ибо изъятие биомассы из общей цепи взаимосвязанных биопроцессов на Земле нарушает равновесие биосистемы (продуктивности зональных экосистем), что может повлечь за собой непредсказуемые негативные последствия. Например, если в лесу старое дерево падает и гниет, то на его месте вырастает новое такое же дерево. Но если упавшее дерево убирают из леса, то вследствие истощения почвы второе дерево будет хуже первого, третье второго и так далее.

Нетронутая тайга сохраняется тысячелетиями, а систематическая рубка деревьев превращает могучие леса в чахлое редколесье (лесостепи), лесостепи – в степи и так далее.

Для исключения распространения пыли от промышленных предприятий, ТЭЦ, ТЭС и т. д. необходимо восстанавливать леса, а не пропагандировать использование древесины в качестве возобновляемого органического топлива, и вот почему.
Листовая поверхность в 1 кв. м задерживает 1,5‑3 г пыли. Корневая система растений закрепляет почву и тем самым уменьшает площадь, которая может быть источником запыления среды.

Зеленые насаждения на площади в 1 га за год очищают воздух от 50‑70 тонн пыли, уменьшая ее концентрацию на 30‑40 %.

Зелень на улицах города может в 2‑3 раза снизить запыленность атмосферы по сравнению с улицами без зелени.

Лес отфильтровывает из воздуха даже радиоактивную пыль. Установлено, что листья и хвоя деревьев могут захватывать до 50 % этой пыли, защищая посевы от радиоактивных загрязнений. Полезащитные полосы могут задерживать содержащиеся в воздухе радиоактивные аэрозоли, снижая плотность загрязнений полей и пастбищ.

Поддержание плодородия

Решением самого нижнего уровня жизнеобеспечения как отдельного человека, так и мирового сообщества является решение проблемы голода.

Поскольку экологически чистые продукты можно получить только на землях, не отравленных золой ТЭЦ, пестицидами, излишним количеством минеральных удобрений, нитратами, то в этой связи на первое место, кроме наличия соответствующей техники, выходит вопрос о ресурсе земли и поддержании ее плодородия в настоящее время и на дальнейшие периоды.

Давно известно, что одним из важнейших показателей плодородия является содержание в почве органического вещества или гумуса. Чем больше его, тем лучше водный, воздушный и тепловой режимы плодородного слоя земли, тем богаче он основными элементами питания растений, тем активнее в нем идет процесс создания живого из «неживого».

Известно также, что почва – это живой организм, комплекс микро- и макрофауны (микроорганизмов и почвенных животных) в сочетании с элементами «неживого» минерального и органического вещества, находящийся в тесном взаимообменном процессе. Почвенная микро- и макрофауна является создателем почв.

«Производство» гумуса происходит ежегодно в огромных количествах. Пик переработки приходится на осень, когда растения в большинстве своем погибают и падают на почву. Вся эта огромная масса мертвых растений, содержащих большое количество различных питательных веществ, достается на переработку почвенным микроорганизмам и животным – червям, которые перерабатывают их в гумус. Из каждой тонны такого сухого материала образуется 600 кг гумусного органического удобрения, включающего в себя все необходимые минеральные элементы питания для растений, вновь появляющихся весной.

Создать гумус другими способами пока невозможно. Гумус – это «хлеб для растений». В нем сосредоточено 95 % запасов почвенного азота, 60 – фосфора, 80 – калия, содержатся все другие минеральные элементы питания растений в сбалансированном состоянии.

Роль гумуса

Гумус – это «консервы почвенного плодородия». Он накапливался и сохранялся в черноземах весь послеледниковый период, т. к. гуматы кальция, магния и других металлов нерастворимы и не вымываются из почвы водой, но расходуются только корневой системой растений по мере необходимости. Он создает зернистую структуру почвы, предохраняет ее от ветровой и водной эрозии, обеспечивает снабжение растений необходимой для фотосинтеза углекислотой, биологически активными ростовыми веществами.

Плодородие полей напрямую связано с количеством и качеством гумуса в почвах. В знаменитых черноземах Центрального и Северокавказского регионов содержалось 10‑14 % гумуса, а мощность слоя чернозема достигала 1 м.

Однако надо иметь в виду и следующее: с полей, садов и огородов мы ежегодно снимаем урожай, унося вместе с ним часть питательных веществ, которые не возвращаются в почву. От недополучения этой части органики почвы истощаются и теряют плодородие. Химические удобрения не могут в полной мере восполнить эту убыль питательных элементов и совершенно не компенсируют потерю гумуса из почвы. Более того, химические удобрения в почве способствуют усилению распада (минерализации) гумуса, они же совместно с пестицидами травят (убивают) червей – основных производителей гумуса в почве. Переработка мертвых остатков растений в гумус прекратилась, а почвы истощились, перестали быть плодородными. Вот почему нередко случается так, что вывоз навоза на поля не может поднять их плодородия – перерабатывать навоз в почве уже некому.

Использование больших доз химических удобрений, пестицидов, высокоинтенсивных обработок почвы резко сократило, местами до полного исчезновения, в почве количество почвообразующих животных и подорвало процесс гумусообразования. Плодородие почв существенно снизилось. Химические удобрения – допинг для почвы. В присутствии минеральных удобрений идет усиленная минерализация гумуса (разложение его на СО 2 и зольные элементы). Постоянное использование такого допинга в возрастающих дозах преступно, т. к. обрекает все живое на голод и вымирание.

Для поддержания бездефицитного баланса гумуса необходимо ежегодно вносить не менее 6‑7 т навоза на 1 га. Однако имеющееся поголовье скота не может обеспечить «производство» такого количества.

Не зря в последнее время для регулирования баланса гумуса и питательных веществ в качестве ресурсосберегающих систем удобрений в почву во время уборки зерновых вносят измельченную солому. Использование измельченной соломы позволяет решать хозяйствам актуальнейшую проблему по утилизации малоценной соломы и исключить затраты на ее сволакивание, перевозку, скирдование и использовать солому для поддержания плодородия почвы с уменьшением ее эрозии и выгорания гумуса.

Поэтому биогазовые установки, использующие вырабатываемый биогаз (до 30 %) на технологические нужды (для поддержания температуры в биореакторе) и лишающие дождевых червей части пищи, нельзя рассматривать как экологически чистые технологии.

Деформирование среды

Мировое сообщество к самым негативным факторам воздействия ТЭКа на биосферу относит выбросы СО 2 (ежегодно количество углекислого газа в атмосфере продолжает увеличиваться на 0,002 %), сжигание кислорода, снижение энергии фотосинтеза за счет загазованности воздуха, а также кислотные дожди, деградацию лесов и земель, которые способствуют дальнейшему техногенному опустыниванию.

В связи с этим резко снизилась и продолжает снижаться первичная биопродуктивность (количество органических веществ, производимых в биосфере). Происходит глобальная деформация окружающей среды.

Сохранение этих тенденций представляет большую экологическую угрозу.

Использование энергетики ВИЭ, в том числе в качестве вторичного инструмента, для обеспечения бесперебойной «обработки» почвы сегодня выходит на одно из первых мест. Экономические потери при отсутствии бесперебойного энергоснабжения в сельском хозяйстве сродни потерям, которые будут наблюдаться на любом производстве непрерывного цикла, будь то металлургический цех или нефтеперерабатывающая установка. Потерь продукции можно не допустить только путем ввода дополнительных производственных мощностей при надежном энергообеспечении производства, хранения, переработки.

Разумное использование

Несомненно, что эффективность использования технологий энергетики ВИЭ с течением времени будет возрастать. Этому будет способствовать и все большая необходимость экономии гумуса, и технический прогресс, и совершенствование организации создания и применения установок ВИЭ.

Применение энергетического оборудования для обработки почвы, ухода за растениями и животными, отопления помещений, приготовления пищи имеет как социальное, так и экономическое значение. Возникает сопутствующий эффект также в добывающих и перерабатывающих отраслях, в машиностроительном комплексе, что будет оказывать влияние на улучшение инвестиционной политики в стране.

Отпадает необходимость в увеличении пропускной способности транспортной инфраструктуры, т. к. при сооружении, например, солнечных соляных прудов и котлованов будут использоваться в основном природные «готовые и вечные» материалы, и не требуется транспорт топлива в прежних объемах.

Структура составляющих социально-эколого-экономического эффекта отдельно взятой системы энергетики ВИЭ показывает, как взвешенно нужно подходить к анализу эффективного использования новых технических решений. А ведь часто при освоении различных по климатическим условиям территорий выбор того или иного источника энергоснабжения поручают людям, далеким не только от энергетики ВИЭ, но и от традиционной, топливной энергетики.

Странно, что правило разумного использования специалистов совершенно отбрасывается, когда дело касается децентрализованного энергоснабжения или обеспечения энергией угнетенных с экологической точки местностей. Некоторые из числа корифеев традиционной энергетики, – без сомнения, крупные специалисты в своей отрасли знания, – считают себя компетентными высказывать догматические суждения по актуальности и социально-эколого-экономической эффективности новых направлений энергетики ВИЭ. А также всему, что к ней относится, не будучи свидетелями ни по одному из ее «феноменов» и часто совершенно не имея представления о ее принципах и практике.

-- [ Страница 5 ] --

Обезвоженный этанол – жидкость в интервале температур от –117 до +78 °С с температурой воспламенения 423 °С. Применение его в двигателе внутреннего сгорания требует специального карбюратора. Поэтому и смешиhttp://dhes.ime.mrsu.ru – Кафедра теплоэнергетических систем 9 Агеев В.А. Нетрадиционные и возобновляемые источники энергии (курс лекций) вают бензин с обезвоженным этанолом (20 % по объему) и используют эту смесь (газохол) в обычных бензиновых двигателях. Газохол в настоящее время – обычное топливо в Бразилии (этанол там получают из сахарного тростника и маниока), используют его и в США (этанол из кукурузы).


Важная особенность этанола – способность выдерживать ударные нагрузки без взрыва, из-за этого он гораздо предпочтительнее добавок из тетраэтилсвинца, вызывающего серьезные загрязнения атмосферы. Превосходные свойства этанола как горючего обеспечивают двигателям 20%-ное увеличение мощности по сравнению с чистым бензином. Массовая плотность и теплотворная способность этанола ниже, чем бензина, соответственно теплота сгорания (24 МДж/м3) на 40% ниже чем бензина (39 МДж/м3). Однако лучшее горение этанола компенсирует это уменьшение теплотворной способности. Опыт подтверждает, что двигатели потребляют примерно одинаковое количество газохола и бензина.

Литература

1. Бойлс Д. Биоэнергия: технология, термодинамика, издержки. – М. Агропромиздат, 1987.

2. Дубровский В.С., Виестур У.Э. Метановое сбраживание сельскохозяйственных отходов. – Рига: Зинатие, 1988.

3. Твайделл Дж., Уэйр А. Возобновляемые источники энергии: Пер. с англ. – М. Энергоатомиздат, 1990. – 392 с.

16. Использование биотоплива для энергетических целей

16.1. Производство биомассы для энергетических целей

16.2. Пиролиз (сухая перегонка)

http://dhes.ime.mrsu.ru – Кафедра теплоэнергетических систем 10 Агеев В.А. Нетрадиционные и возобновляемые источники энергии (курс лекций)

16.3. Термохимические процессы

16.4. Спиртовая ферментация (брожение)

16.4.1. Методы получения спирта

16.4.2. Использование этанола в качестве топлива

Литература

–  –  –

18.1. Проблема взаимодействия энергетики и экологии В комплексе существующих экологических проблем энергетика занимает одно из ведущих мест. В связи с интенсивным вовлечением возобновляемых источников энергии в практическое использование особое внимание обращается на экологический аспект их воздействия на окружающую среду.

Существует мнение, что выработка электроэнергии за счет возобновляемых источников представляет собой абсолютно экологически «чистый»

вариант. Это не совсем верно, так как эти источники энергии обладают принципиально иным спектром воздействия на окружающую среду по сравнению с традиционными энергоустановками на органическом, минеральном и гидравлическом топливе, причем в некоторых случаях воздействия последних представляют даже меньшую опасность. К тому же определенные виды экологического воздействия НВИЭ на окружающую среду не ясны до настоящего времени, особенно во временном аспекте, а потому изучены и разработаны еще в меньшей степени, чем технические вопросы использования этих источников.

Разновидностью возобновляемых источников энергии являются гидроэнергетические ресурсы. Долгое время их также относили к экологически «чистым» источникам энергии. Не принимая во внимание экологические последствия такого использования, естественно, не проводилось достаточных разработок природоохранных и средозащитных мероприятий, что привело гидроэнергетику на рубеже 90-х годов к глубокому кризису. Поэтому возможные экологические последствия применения НВИЭ должны быть исследованы заранее.

Преобразование энергии нетрадиционных возобновляемых источников в наиболее пригодные формы ее использования – электричество или тепло – ©Кафедра теплоэнергетических систем, 2004 1 Агеев В.А. Нетрадиционные и возобновляемые источники энергии (курс лекций) на уровне современных знаний и технологий обходится довольно дорого.

Однако во всех случаях их использование приводит к эквивалентному снижению расходов органического топлива и меньшему загрязнению окружающей среды. До настоящего времени во всех методиках, в которых приводится технико-экономическое сопоставление традиционных видов получения энергии с возобновляемыми источниками, эти факторы не учитывались вообще или только отмечались, но не оценивались количественно.

Таким образом, актуальной становится задача разработки научно обоснованных методов экономической оценки экологических последствий использования различных видов возобновляющихся источников энергии и новых методов преобразования энергии, которые должны количественно учесть факторы иного, по сравнению с традиционными установками, воздействия на окружающую среду.

Рассмотрим основные факторы экологического воздействия нетрадиционных возобновляющихся источников энергии на различные природные среды и объекты.

18.2. Экологические последствия развития солнечной энергетики

Солнечные станции являются еще недостаточно изученными объектами, поэтому отнесение их к экологически чистым электростанциям нельзя назвать полностью обоснованным. В лучшем случае к экологически чистой можно отнести конечную стадию – стадию эксплуатации СЭС, и то относительно.

Солнечные станции являются достаточно землеемкими. Удельная землеемкость СЭС изменяется от 0,001 до 0,006 га/кВт с наиболее вероятными значениями 0,003–0,004 га/кВт. Это меньше, чем для ГЭС, но больше, чем для ТЭС и АЭС. При этом надо учесть, что солнечные станции весьма материалоемки (металл, стекло, бетон и т.д.), к тому же в приведенных значениях землеемкости не учитываются изъятие земли на стадиях добычи и обработки сырья. В случае создания СЭС с солнечными прудами удельная землеемКафедра теплоэнергетических систем, 2004 2 Агеев В.А. Нетрадиционные и возобновляемые источники энергии (курс лекций) кость повысится и увеличится опасность загрязнения подземных вод рассолами.

Солнечные концентраторы вызывают большие по площади затенения земель, что приводит к сильным изменениям почвенных условий, растительности и т. д. Нежелательное экологическое действие в районе расположения станции вызывает нагрев воздуха при прохождении через него солнечного излучения, сконцентрированного зеркальными отражателями. Это приводит к изменению теплового баланса, влажности, направления ветров; в некоторых случаях возможны перегрев и возгорание систем, использующих концентраторы, со всеми вытекающими отсюда последствиями. Применение низкокипящих жидкостей и неизбежные их утечки в солнечных энергетических системах во время длительной эксплуатации могут привести к значительному загрязнению питьевой воды. Особую опасность представляют жидкости, содержащие хроматы и нитриты, являющиеся высокотоксичными веществами.

Гелиотехника косвенным образом оказывает влияние на окружающую среду. В районах ее развития должны возводиться крупные комплексы по производству бетона, стекла и стали. Во время изготовления кремниевых, кадмиевых и арсенидогелиевых фотоэлектрических элементов в воздухе производственных помещений появляются кремниевая пыль, кадмиевые и арсенидные соединения, опасные для здоровья людей.

Космические СЭС за счет СВЧ-излучения могут оказывать влияние на климат, создавать помехи теле- и радиосвязи, воздействовать на незащищенные живые организмы, попавшие в зону его влияния. В связи с этим необходимо использовать экологически чистый диапазон волн для передачи энергии на Землю.

Неблагоприятные воздействия солнечной энергии на окружающую среду могут проявляться:

в отчуждении земельных площадей, их возможной деградации;

©Кафедра теплоэнергетических систем, 2004 3 Агеев В.А. Нетрадиционные и возобновляемые источники энергии (курс лекций) в большой материалоемкости;

в возможности утечки рабочих жидкостей, содержащих хлораты и нитриты;

в опасности перегрева и возгорания систем, заражения продуктов токсичными веществами при использовании солнечных систем в сельском хозяйстве;

в изменении теплового баланса, влажности, направления ветра в районе расположения станции;

в затемнении больших территорий солнечными концентраторами, возможной деградации земель;

в воздействии на климат космических СЭС;

в создании помех телевизионной и радиосвязи;

в передаче энергии на Землю в виде микроволнового излучения, опасного для живых организмов и человека.

18.3. Влияние ветроэнергетики на природную среду

Факторы воздействия ВЭС на природную среду, а также последствия этого влияния и основные мероприятия по снижению и устранению отрицательных проявлений приведены в табл. 18.3.1. Рассмотрим некоторые из них более подробно.

Под мощные промышленные ВЭС необходима площадь из расчета от 5 до 15 МВт/км2 в зависимости от розы ветров и местного рельефа района. Для ВЭС мощностью 1000 МВт потребуется площадь от 70 до 200 км2. Выделение таких площадей в промышленных регионах сопряжено с большими трудностями, хотя частично эти земли могут использоваться и под хозяйственные нужды. Например, в Калифорнии в 50 км от г. Сан-Франциско на перевале Алтамонт-Пасс земля, отведенная под парк мощной ВЭС, одновременно служит для сельскохозяйственных целей.

–  –  –

Проблема использования территории упрощается при размещении ВЭС на акваториях. Например, предложения по созданию мощных ВЭС на мелкоКафедра теплоэнергетических систем, 2004 5 Агеев В.А. Нетрадиционные и возобновляемые источники энергии (курс лекций) водных акваториях Финского залива и Ладожского озера не связаны с изъятием больших территорий из хозяйственного, пользования. Из отводимой площади акватории для ВЭС непосредственно под сооружения для ВЭУ понадобится лишь около 2 %. В Дании дамба, на которой установлен парк ВЭУ, одновременно является пирсом для рыболовных судов. Использование территории, занятой ветровым парком, под другие цели зависит от шумовых эффектов и степени риска при поломках ВЭУ. У больших ВЭУ лопасть при отрыве может быть отброшена на 400–800 м.

Наиболее важный фактор влияния ВЭС на окружающую среду – это акустическое воздействие. В зарубежной практике выполнено достаточно исследований и натурных изменений уровня и частоты шума для различных ВЭУ с ветроколесами, отличающимися конструкцией, материалами, высотой над землей, и для разных природных условий (скорость и направление ветра, подстилающая поверхность и т. д.).

Шумовые эффекты от ВЭУ имеют разную природу и подразделяются на механические (шум от редукторов, подшипников и генераторов) и аэродинамические воздействия. Последние, в свою очередь, могут быть низкочастотными (менее 16-20 Гц) и высокочастотными (от 20 Гц до нескольких кГц). Они вызваны вращением рабочего колеса и определяются следующими явлениями: образованием разряжения за ротором или ветроколесом с устремлением потоков воздуха в некую точку схода турбулентных потоков;

пульсациями подъемной силы на профиле лопасти; взаимодействием турбулентного пограничного слоя с задней кромкой лопасти.

Удаление ВЭС от населенных пунктов и мест отдыха решает проблему шумового эффекта для людей. Однако шум может повлиять на фауну, в том числе на морскую фауну в районе экваториальных ВЭС. По зарубежным данным, вероятность поражения птиц ветровыми турбинами оценивается в 10%, если пути миграции проходят через ветровой парк. Размещение ветровых парков повлияет на пути миграции птиц и рыб для экваториальных ВЭС.

©Кафедра теплоэнергетических систем, 2004 6 Агеев В.А. Нетрадиционные и возобновляемые источники энергии (курс лекций) Высказываются предположения, что экранирующее действие ВЭС на пути естественных воздушных потоков будет незначительным и его можно не принимать во внимание. Это объясняется тем, что ВЭУ используют небольшой приземный слой перемещающихся воздушных масс (около 100-150

м) и притом не более 50 % их кинетической энергии. Однако мощные ВЭС могут оказать влияние на окружающую среду: например, уменьшить вентиляцию воздуха в районе размещения ветрового парка. Экранирующее действие ветрового парка может оказаться эквивалентным действию возвышенности такой же площади и высотой порядка 100-150 м.

Помехи, вызванные отражением электромагнитных волн лопастями ветровых турбин, могут сказываться на качестве телевизионных и микроволновых радиопередач, а также различных навигационных систем в районе размещения ветрового парка ВЭС на расстоянии нескольких километров.

Наиболее радикальный способ уменьшения помех – удаление ветрового парка на соответствующее расстояние от коммуникаций. В ряде случаев помех можно избежать, установив ретрансляторы. Этот вопрос не относится к категории трудноразрешимых, и в каждом случае может быть найдено конкретное решение

Неблагоприятные факторы ветроэнергетики:

шумовые воздействия, электро-, радио- и телевизионные помехи;

отчуждение земельных площадей;

локальные климатические изменения;

опасность для мигрирующих птиц и насекомых;

ландшафтная несовместимость, непривлекательность, визуальное невосприятие, дискомфортность;

изменение традиционных морских перевозок, неблагоприятные воздействия на морских животных.

–  –  –

18.4. Возможные экологические проявления геотермальной энергетики Основное воздействие на окружающую среду геотермальные электростанции оказывают в период разработки месторождения, строительства паропроводов и здания станций, но оно обычно ограничено районом месторождения.

Природный пар или газ добываются бурением скважин глубиной от 300 до 2700 м. Под действием собственного давления пар поднимается к поверхности, где собирается в теплоизолированные трубопроводы и подается к турбинам. К примеру, в долине гейзеров (США) производительность каждой скважины обеспечивает в среднем 7 МВт полезной мощности. Для работы станции мощностью 1000 МВт требуется 150 скважин, которые занимают территорию более 19 км2.

Потенциальными последствиями геотермальных разработок являются оседание почвы и сейсмические эффекты. Оседание возможно всюду, где нижележащие слои перестают поддерживать верхние слои почвы и выражается в снижении дебитов термальных источников и гейзеров и даже полном их исчезновении. Так, при эксплуатации месторождения Вайрокей (США) с 1954 по 1970 гг. поверхность земли просела почти на 4 м, а площадь зоны, на которой произошло оседание грунта, составила около 70 км2, продолжая ежегодно увеличиваться.

Высокая сейсмическая активность является одним из признаков близости геотермальных месторождений, и этот признак используется при поисках ресурсов. Однако интенсивность землетрясений в зоне термальных явлений, вызванных вулканической деятельностью, обычно значительно меньше интенсивности землетрясений, вызванных крупными смещениями земной коры по разломам. Поэтому нет оснований считать, что разработка геотермальных ресурсов увеличивает сейсмическую активность.

На ГеоТЭС не происходит сжигания топлива, поэтому объем отравляющих газов, выбрасываемых в атмосферу, значительно меньше, чем на ©Кафедра теплоэнергетических систем, 2004 8 Агеев В.А. Нетрадиционные и возобновляемые источники энергии (курс лекций) ТЭС, и они имеют другой химический состав по сравнению с газообразными отходами станций на органическом топливе. Пар, добываемый из геотермальных скважин, в основном является водяным. Газовые примеси на 80 % состоят из двуокиси углерода и содержат небольшую долю метана, водорода, азота, аммиака и сероводорода. Наиболее вредным является сероводород (0,0225 %). В геотермальных водах содержатся в растворенном виде такие газы, как SO2, N2, NH3, H2S, CH4, H2.

Потребность ГеоТЭС в охлаждающей воде (на 1 кВт·ч электроэнергии) в 4-5 раз выше, чем ТЭС, из-за более низкого КПД. Сброс отработанной воды и конденсата для охлаждения в водоемы может вызвать их тепловое загрязнение, а также повышение концентрации солей, в том числе хлористого натрия, аммиака, кремнезема, и таких элементов, как бор, мышьяк, ртуть, рубидий, цезий, калий, фтор, натрий, бром, иод, хотя и в небольших количествах.

С ростом глубин скважин возможно увеличение этих поступлений.

Одно из неблагоприятных проявлений ГеоТЭС – загрязнение поверхностных и грунтовых вод в случае выброса растворов высокой концентрации при бурении скважин. Сброс отработанных термальных вод может вызвать заболачивание отдельных участков почвы в условиях влажного климата, а в засушливых районах – засоление. Опасен прорыв трубопроводов, в результате которого на землю могут поступить большие количества рассолов.

ГеоТЭС, имея КПД в 2-3 раза меньше, чем АЭС и ТЭС, дают в 2-3 раза больше тепловых выбросов в атмосферу. В качестве простого пути сокращения воздействий на окружающую среду следует рекомендовать создание круговой циркуляции теплоносителя на ГеоТЭС по системе «скважина – теплосъемные агрегаты – скважина – пласт». Это позволит избежать поступления термальных вод на поверхность земли, в грунтовые воды и поверхностные водоемы, обеспечить сохранение пластового давления, исключить оседание грунта и любую возможность сейсмических проявлений.

Неблагоприятные экологические воздействия геотермальной энергеКафедра теплоэнергетических систем, 2004 9 Агеев В.А. Нетрадиционные и возобновляемые источники энергии (курс лекций) тики на эколгию:

отчуждение земель;

изменение уровня грунтовых вод, оседание почвы, заболачивание;

подвижки земной коры, повышение сейсмической активности;

выбросы газов (метан, водород, азот, аммиак, сероводород) ;

выброс тепла в атмосферу или в поверхностные воды;

сброс отравленных вод и конденсата, загрязненных в небольших количествах аммиаком, ртутью, кремнеземом;

загрязнение подземных вод и водоносных слоев, засоление почв;

выбросы больших количеств рассолов при разрыве трубопроводов.

18.5. Экологические последствия использования энергии океана

При преобразовании любых видов океанической энергии неминуемы определенные изменения естественного состояния затрагиваемых экосистем.

К отрицательным последствиям работы установок, использующих термальную энергию океана, можно отнести возможные утечки в океан аммиака, пропана или фреона, а также веществ, применяемых для промывки теплообменников (хлор и др.). Возможно значительное выделение углекислого газа из поднимаемых на поверхность холодных глубинных вод из-за снижения в них парциального давления СО2 и повышения температуры, Выделение СО2 из воды при работе океанических ТЭС предположительно на 30% больше, чем при работе обычных ТЭС той же мощности, использующих органическое топливо. Охлаждение вод океана вызывает увеличение содержания питательных веществ в поверхностном слое и значительный рост фитопланктона. При подъеме к поверхности глубинные микроорганизмы будут загрязнять океан и придется применять специальные меры для его очистки.

Строительство ПЭС сказывается неблагоприятно на состоянии приКафедра теплоэнергетических систем, 2004 10 Агеев В.А. Нетрадиционные и возобновляемые источники энергии (курс лекций) брежных земель, самого побережья и аквальной вдольбереговой полосы: изменяются условия подтопления, засоления, размыва берегов, формирование пляжей и т. д. Изменение движения грунтовых вод влияет на динамику засоления прибрежных земель.

На ПЭС в КНР изучены закономерности отложения наносов в водохранилище ПЭС и за плотиной, а также мероприятия по борьбе с ними. Эксплуатация ПЭС «Ране» во Франции показала, что принятая в ее проекте однобассейновая схема двухстороннего действия максимально сохраняет природный цикл колебаний бассейна и гарантирует тем самым экологическую безопасность приливной энергии.

Использование энергии волн на глубоководных местах в открытом океане сказывается на процессах в акватории океана. Преобразователи размещаются далеко от берега и не оказывают отрицательного действия на устойчивость побережья.

При установке преобразователей вблизи побережья возникают проблемы эстетического характера, так как они видны с берега. Цепочка устройств типа ныряющих уток Солтера длиной в несколько километров выглядит эстетически менее привлекательно, чем группа продуманно размещенных отдельно стоящих преобразователей энергии. Кроме того, непрерывная линия преобразователей в отличие от отдельно расположенных установок может стать препятствием для навигации и оказаться опасной для судов во время сильных штормов.

Один из важных вопросов влияния на окружающую среду преобразования энергии волн в прибрежной зоне – это воздействие на процессы в ее пределах. Вещества, перемещаемые волнами, называются прибрежными наносами. Движение их необходимо для стабилизации береговой полосы, т. е.

баланса между эрозией и отложениями. В связи с этим цепь из преобразователей энергии волн целесообразно устанавливать в местах намечаемых волноломов, чтобы они выполняли двойную функцию: использование энергии ©Кафедра теплоэнергетических систем, 2004 11 Агеев В.А. Нетрадиционные и возобновляемые источники энергии (курс лекций) волн и защиту побережья.

Неблагоприятные экологические последствия в гидротермальной энергетике:

утечки в океан аммиака, фреона, хлора и др.;

выделение СО2 из воды;

изменение циркуляции вод, появление региональных и биологических аномалий под воздействием гидродинамических и тепловых возмущений;

изменение климата.

Неблагоприятные экологические последствия в приливной энергетике:

периодическое затопление прибрежных территорий, изменение землепользования в районе ПЭС, флоры и фауны акватории;

строительное замутнение воды, поверхностные сбросы загрязненных вод.

Неблагоприятные экологические последствия в волновой энергетике:

эрозия побережья, смена движения прибрежных песков;

значительная материалоемкость;

изменение сложившихся судоходных путей вдоль берегов;

загрязнение воды в процессе строительства, поверхностные сбросы.

18.6. Экологическая характеристика использования биоэнергетических установок Биоэнергетические станции по сравнению с традиционными электростанциями и другими НВИЭ являются наиболее экологически безопасными.

Они способствуют избавлению окружающей среды от загрязнения всевозможными отходами. Так, например, анаэробная ферментация – эффективное средство не только реализации отходов животноводства, но и обеспечения ©Кафедра теплоэнергетических систем, 2004 12 Агеев В.А. Нетрадиционные и возобновляемые источники энергии (курс лекций) экологической чистоты, так как твердые органические вещества теряют запах и становятся менее привлекательными для грызунов и насекомых (в процессе перегнивания разрушаются болезнетворные микроорганизмы). Кроме того, образуются дополнительный корм для скота (протеин) и удобрения.

Городские стоки и твердые отходы, отходы при рубках леса и деревообрабатывающей промышленности, представляя собой возможные источники сильного загрязнения природной среды, являются в то же время сырьем для получения энергии, удобрений, ценных химических веществ. Поэтому широкое развитие биоэнергетики эффективно в экологическом отношении.

Однако неблагоприятные воздействия на объекты природной среды при энергетическом использовании биомассы имеют место. Прямое сжигание древесины дает большое количество твердых частиц, органических компонентов, окиси углерода и других газов. По концентрации некоторых загрязнителей они превосходят продукты сгорания нефти и ее производных. Другим экологическим последствием сжигания древесины являются значительные тепловые потери.

По сравнению с древесиной биогаз – более чистое топливо, непроизводящее вредных газов и частиц. Вместе с тем необходимы меры предосторожности при производстве и потреблении биогаза, так как метан взрывоопасен.

Поэтому при его хранении, транспортировке и использовании следует осуществлять регулярный контроль для обнаружения и ликвидации утечек.

При ферментационных процессах по переработке биомассы в этанол образуется большое количество побочных продуктов (промывочные воды и остатки перегонки), являющихся серьезным источником загрязнения среды, поскольку их вес в несколько раз (до 10) превышает вес этилового спирта.

Неблагоприятные воздействия биоэнергетики на экологию:

выбросы твердых частиц, канцерогенных и токсичных веществ, окиси углерода, биогаза, биоспирта;

выброс тепла, изменение теплового баланса;

–  –  –

обеднение почвенной органики, истощение и эрозия почв;

взрывоопасность;

большое количество отходов в виде побочных продуктов (промывочные воды, остатки перегонки).

–  –  –

18. Экологические проблемы использования нетрадиционных и возобновляемых источников энергии

18.1. Проблема взаимодействия энергетики и экологии

18.2. Экологические последствия развития солнечной энергетики.................. 2

18.3. Влияние ветроэнергетики на природную среду

18.4. Возможные экологические проявления геотермальной энергетики........ 8

18.5. Экологические последствия использования энергии океана.................. 10

18.6. Экологическая характеристика использования биоэнергетических установок

Литература